Senin, 06 Desember 2010

LOGIKA MATEMATIKA

A. Pernyataan
Yang dimaksud dengan kalimat atau pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah.
Ada dua jenis kalimat matematika, yaitu :
Kalimat tertutup, merupakan pernyataan yang nilai kebenarannya sudah pasti.
Contoh :
a) 3 x 4 = 12 (pernyataan tertutup yang benar)
b) 3 + 4 = 12 (pernyataan tertutup yang salah)
Kalimat terbuka, merupakan pernyataan yang kebenarannya belum pasti.
Contoh :
a : Ada daun yang berwarna hijau
b : Gula putih rasanya manis 

B. Ingkaran Pernyataan
Ingkaran atau negasi suatu pernyataan adalah pernyataan yang menyangkal pernyataan yang diberikan. Ingkaran suatu pernyataan dapat dibentuk dengan menambah “Tidak benar bahwa ...” di depan pernyataan yang diingkar. Ingkaran pernyataan adalah ~ p.
Contoh :
Misalkan pernyataan p : Tembakau yang mengandung nikotin.
Ingkaran penyataan p adalah ~ p. Tidak benar bahwa tembakau mengandung nikotin. 

Tabel kebenaran dari ingkaran 






C. Pernyataan Majemuk
(i) Konjungsi
Pernyataan p dengan q dapat digabung dengan kata hubung logika “dan” sehingga membentuk pernyataan majemuk “p dan q” yang disebut konjungsi. Konjungsi “p dan q” dilambangkan dengan  

 


(ii) Disjungsi
Pernyataan p dengan q dapat digabung dengan kata hubung logika “atau” sehingga membentuk pernyataan majemuk “p atau q” yang disebut disjungsi. Disjungsi p atau q dilambangkan dengan  . 
 


(iii) Implikasi 

Implikasi “jika p maka q” dilambangkan dengan
 . 

 



(iv) Biimplikasi 
Biimplikasi “p jika dan hanya jika q” dilambangkan dengan .

D. Ekuivalensi Pernyataan – Pernyataan Majemuk
 



E. Konvers, Invers, dan Kontraposisi
Dari sebuah implikasi dapat diturunkan pernyataan yang disebut konvers, invers dan kontraposisi dari implikasi tersebut.





TRIGONOMETRI

A. Pengertian Trigonometri 


Trigonometri terdiri dari sinus (sin), cosinus (cos), tangens ( tan), cotangens (cot), secan (sec) dan cosecan (cosec). Trigonometri merupakan nilai perbandingan yang didefinisikan pada koordinat kartesius atau segitiga siku-siku. 
Jika trigonometri didefinisikan dalam segitiga siku-siku, maka definisinya adalah sebagai berikut: 





B. Nilai Trigonometri untuk Sudut-sudut Istimewa




C. Rumus-rumus Identitas Trigonometri


D. Rumus- Rumus Trigonometri




Aturan Trigonometri dalam Segitiga 







LOGARITMA

Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan.
Rumus dasar logaritma:
bc= a ditulis sebagai blog a = c (b disebut basis)
Beberapa orang menuliskan blog a = c sebagai logba = c.





I. Sifat-sifat Logaritma
a. Sifat Perkalian Logaritma
Perkalian logaritma samadengan penjumlahan logaritma dengan basis tetap.

b.Sifat Pembagian Logaritma
Jika hasil logaritma merupakan pembagian,hasilnya dapat diuraikan menjadi operasi pengurangan bilangan logaritma dengan basis tetap.



c. Sifat Perpangkatan Logaritma
Hasil operasi berupa bilangan logaritma berpangkat, dapat diuraikan 




d. Sifat Penarikan Akar
Jika ada hasil operasi logaritma yang berbentuk akar, ubahlah terlebih dahulu menjadi bentuk pangkat untuk mempermudah penyelesaianya.



Beberapa Sifat Logaritma yang lain:

II. Persamaan Logaritma



III. Pertidaksamaan Logaritma







EKSPONEN


Eksponen adalah perkalian yang diulang-ulang. Orang menulis eksponen dengan indeks di atas, yang akan terlihat sebagai berikut: xy. Terkadang hal itu tak mungkin. Kemudian orang menulis eksponen menggunakan tanda ^2^3 berarti 23.
Bilangan x disebut bilangan pokok, dan bilangan y disebut eksponen. Sebagai contoh, pada 23, 2 adalah bilangan pokok dan 3 eksponen.
Untuk menghitung 23 seseorang harus mengalikan 3 kali terhadap angka 2. Sehingga 2^3=2 \cdot 2 \cdot 2. Hasilnya adalah 2 \cdot 2 \cdot 2=8. Apa yang dikatakan persamaan bisa juga dikatakan dengan cara ini: 2 pangkat 3 sama dengan 8.


Contoh:
  • 5^3=5\cdot{} 5\cdot{} 5=125
  • x^2=x\cdot{} x
  • 1x = 1 untuk setiap bilangan x
Jika eksponen sama dengan 2, maka disebut persegi karena area persegi dihitung menggunakan a2. Sehingga
x2 adalah persegi dari x
Jika eksponen sama dengan 3, maka disebut kubik karena volume kubus dihitung dengan a3. Sehingga
x3 adalah kubik x
Jika eksponen sama dengan -1 orang harus menghitung inversi bilangan pokok. Sehingga:x^{-1}=\frac{1}{x} Jika eksponen adalah integral dan kurang dari 0, orang harus membalik bilangan dan menghitung pangkat. Sebagai contoh:
2^{-3}=(\frac{1}{2})^3=\frac{1}{8}
Jika eksponen sama dengan \frac{1}{2} hasilnya adalah akar persegi bilangan pokok. Sehingga x^{\frac{1}{2}}=\sqrt{x}. Contoh:
4^{\frac{1}{2}}=\sqrt{4}=2
Dengan cara yang sama, jika eksponen \frac{1}{n} hasilnya adalah akar ke-n, sehingga:
a^{\frac{1}{n}}=\sqrt[n]{a}
Jika eksponen merupakan bilangan rasional \frac{p}{q}, hasilnya adalah akar ke-q bilangan pokok yang dipangkatkan p, sehingga:
a^{\frac{p}{q}}=\sqrt[q]{a^p}
Eksponen bisa juga tak rasional. Untuk menjadikan bilangan pokok a menjadi pangkat ke-x yang tak rasional, kita menggunakan rangkaian ketidakterhinggaan bilangan rasional (xi), yang limitnya adalah x:
x=\lim_{n\to\infty}x_n
seperti ini:a^x=\lim_{n\to\infty}a^{x_n}
Ada beberapa aturan yang membantu menghitung pangkat:
  • \left(a\cdot b\right)^n = a^n\cdot{}b^n
  • \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n},\quad b\neq 0
  • a^r \cdot{} a^s = a^{r+s}
  • \frac{a^r}{a^s} = a^{r-s},\quad a\neq 0
  • a^{-n} = \frac{1}{a^n},\quad a\neq 0
  • \left(a^r\right)^s = a^{r\cdot s}
  • a^0 = 1,\quad a\neq 0: Bila bilangan pokok lebih besar daripada 1 dan eksponen 0, jawabannya 1. Jika bilangan pokok dan pangkat sama dengan 0, jawabannya tak terdefinisikan.
Ekponen matriks bisa pula dihitung. Matriks itu harus persegi. Sebagai contoh: I^2=I \cdot I=I.

SISTEM PERSAMAAN LINEAR

Persamaan linear adalah sebuah persamaan aljabar, yang tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus dalam Sistem koordinat Kartesius.

Bentuk umum untuk persamaan linear adalah
y = mx + b.\,
Dalam hal ini, konstanta m akan menggambarkan gradien garis, dan konstanta b merupakan titik potong garis dengan sumbu-y. Persamaan lain, seperti x3y1/2, dan xy bukanlah persamaan linear.


Bentuk Umum

Ax + By + C = 0,\,
dimana konstanta A dan B bila dijumlahkan, hasilnya bukan angka nol. Konstanta dituliskan sebagai A ≥ 0, seperti yang telah disepakati ahli matematika bahwa konstanta tidak boleh sama dengan nol. Grafik persamaan ini bila digambarkan, akan menghasilkan sebuah garis lurus dan setiap garis dituliskan dalam sebuah persamaan seperti yang tertera diatas. Bila A ≥ 0, dan x sebagai titik potong, maka titik koordinat-xadalah ketika garis bersilangan dengan sumbu-x (y = 0) yang digambarkan dengan rumus -c/a. Bila B≥ 0, dan y sebagai titik potong, maka titik koordinat- y adalah ketika garis bersilangan dengan sumbu-y (x = 0), yang digambarkan dengan rumus -c/b.


Bentuk standar

ax + by = c,\,
di mana, a dan b jika dijumlahkan, tidak menghasilkan angka nol dan a bukanlah angka negatif. Bentuk standar ini dapat dirubah ke bentuk umum, tapi tidak bisa diubah ke semua bentuk, apabila a dan b adalah nol.


Bentuk titik potong gradien


Sumbu-y

y = mx + b,\,
dimana m merupaka gradien dari garis persamaan, dan titik koordinat y adalah persilangan dari sumbu-y. Ini dapat digambarkan dengan x = 0, yang memberikan nilai y = b. Persamaan ini digunakan untuk mencari sumbu-y, dimana telah diketahui nilai dari x. Y dalam rumus tersebut merupakan koordinat y yang anda taruh di grafik. Sedangkan Xmerupakan koordinat x yang anda taruh di grafik.


Sumbu-x

x = \frac{y}{m} + c,\,
dimana m merupakan gradien dari garis persamaan, dan c adalah titik potong-x, dan titik koordinat x adalah persilangan dari sumbu-x. Ini dapat digambarkan dengan y = 0, yang memberikan nilai x = c. Bentuk y/m dalam persamaan sendiri berarti bahwa membalikkan gradien dan mengalikannya dengan y. Persamaan ini tidak mencari titik koordinat x, dimana nilai y sudah diberikan.
ء-


Sistem persamaan linear lebih dari dua variabel

Sebuah persamaan linear bisa mempunyai lebih dari dua variabel, seperti berikut ini:
a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b.
di mana dalam bentuk ini, digambarkan bahwa a1 adalah koefisien untuk variabel pertama, x1, dan n merupakan jumlah variabel total, serta b adalah konstanta.


Contoh sistem persamaan linear dua variabel:
x + 2y = 10,\,,
3b + 5c = 4d+ 20,\,,
5x - 3y +6 = -9x + 8y+ 4,\,